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Stabilization of the steady motion of a system by additional forces with minimization 
of a certain functional characterizing control quality a] is considered. The problem of 

determining the form of the integrand in the quality criterion and of the controlling for- 

ces from a certain class in such a way that the Liapunov function for the undontrolled 

system can serve as the Liapunov function for the same system under the action of addi- 

tional controlling forces is inwstigated. This problem is close to the inversion problem 
of analytical regulator construction @I. The problem of optimal stabilization in some 

of the parameters [S] is stated and a theorem generalizing the basic theorem on stabili- 

zation in all the variables fl] is proved. Both problems are considered with specific refe- 
rence to mechanical systems with a generalized energy integral of fixed sign. The results 

are illustrated by means of several examples. These include the problem of optimal 

stabilization of the positions relative to equilibrium and of the steady motions of a gyro- 
stat satellite. 

1. Let us consider the equations of perturbed motion of some system 

d=* 
r = x, @, Xl, * - * 9 x?J (s=I....,n) (1.1) 

whose right sides X, are defined in the domain 

t>t,, j%I<H, H=const>O (s=i,....n) (1.2) 

We assume that the functions X, in domain (1.2) are continuous and that they satisfy 
the conditions which ensure the existence and uniqueness of the solutions of Eqs. (1.1) 
under any initial conditions from the domain (1.2) ; we also assume fulfillment of the 
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identities 

Let us suppose that Eqs, (1.1) are associated with a continuous and unique function 

v (t, 21, “', %) which vanishes for 3 a = Of This function is positive-definite and 
can have an infinitely small upper bound. By virtue of Eqs. (I, 1) its derivative with 
respect to time. i.e. 

is either negatl~e-de~nite, or negative-constant, or identically equal to zero. 

Under these conditions the unperturbed motion x = 0 is uniformly stable in to. More- 

over, in the case ofa negative-definite fuRctlon tlr (t, x) the un~rt~lrbed motion is 
asymptotically stable as in the case of a negative-constant function w (x) if the right 
sides of Eqs. (1.X) do not depend OR time and if the manifold w (x) = 0 does not COR- 

tain entire motions of system other than the motion x = 0 [it]. 
There have been frequent attemprs to make the unperturbed motion x = 0 asymptot- 

ically stable in such a way as to minimize the integral 

characterizing the quality of the transient process for all initial conditions from the 
domain 

t>tt,, IxJ<H1<N (s=i,. . . , n) WV 

by subjecting the system to a system of additional forces of the form Y, (1, zl, . . . . x,; 
aI, . . . . u,) defined in domain (1.2). 

The integrand 0 (t, I, U) in (1.3) is a certain Continuous nonnegative function 

defined in domain (1.2). The ~troll~g forces ui = r.+ (t, slLi, . ..* a+,) must be defined 
and continuous in domain (1.2) and satisfy the equations 

UJ (tc 0, .“, 0) = 0 (i = 1, . . . r) 

We also assume that the right sides of the system of equations 

az, 
7 = x, {S, x1* * - .r~~)~Ys(t,zx,...~~:,;ul**~*,~r) (1.5)* 

satisfy the conditions of existence and uniqueness of the solutions in domain (1.2) ;more- 
over, Ye (t, 0, . . . 0; 0, ."., 0) f 0. 

The ~rnbo~ uf [t] represent the ma~itudes of the con~olling forces ~1 it] = 

= ui (L31 [tl,..., zn [t]) as functions of the time alone which are realized in system 

(1.5) for uj = uj (t, ;5,, ..*, z,J; the symbols x8 [lf represent those motions of system 

(1.5) which are generated by the control “Cj 111. 

The solution of this problem, i. e, the conrrolling forces uj - ajo (t, z) which ensure 
the asymptotic stability of the motion z = 0 by virtue of Eqs. (1.5) and minimize inte- 
gral (1.3), can be determined with the aid of the familiar basic theorem p] on optimal 

stabilization which is a modification of the iiapunov theorem on asymptotic stability 
with allowance for certain considerations of Bellman’s dynamic programing method. As 
we know, the problem is reducible to the determination of the Liapunov optimal function 
V” (t, 3) and of the optimal controlling forces ujO (t, z); the former satisfies a partial dif- 
ferential equation which must be solved with allowance for a single additional inequality. 
This constitutes a quite difficult problem 111: 

In this connection we pose the question of the form which the known function 



On the optimal stabilization of controlled systems 417 

0 (t; s; U) in integral (1.3) for the uncontrolled system under consideration must take 

in order for the Liapunov function V (t, Z) which solves the problem of the stability of 

the trivial solution of system (1.1) to serve as the optimal Liapunov function v” (t, Z) 
for the same system under the action of the additional controlling forces Y, (t; Z; U) 
when the equations of perturbed motion are of the form (1.5). 

It is clear that this question is closely related to the inversion of the problem of ana- 

lytical construction of regulators, and also to the problem of selecting an optimizing 

functional p]. 
For simplicity we shall limit our investigation to the class of functions 0 (t; s; u) 

of the following structure : P 

o (t; Z; U) = F (t, ~1, - s . 9 2,) + 6’9 5’ = 2 PiiUiuj (1.6) 
i,j=l 

where F (t, 5) is a nonnegative function to be determined and s is a given positive- 

definite quadratic form with symmetric coefficients Big = pjit and to the class of addi- 

tional forces Y, (1; z; u) linear with respect to the controlling forces, 

Ys(t;s;u)= i &j (tt tic . - * 9 %) uj (1.7) 
j=l 

Let us find the time derivative of the Liapunov function v (t, 2) known for system 
(1.1) by virtue of system (1.5) with allowance for (1.7) 

(1.8) 

and construct the following expression [1] with allowance for (1.6) : 

m,juj + F (tv 5) + 2 BijUiUj (1.9) 
ij=l 

By the conditions of the optimal stabilization theorem this expression reaches its 

minimum value of Zero for uJ = uJ”. The optimal controlling forces satisfy the equa- 
tions 

E=$ Em8j+ 
j ‘ 

t 
2 2 ljIjUiLO (j=l,...,r) (1.10) 

i=l 

Solving Eqs. (1.10). we obtain ~ 
n 

Uj’(t, 5) = -+ 2 $2 zrniR 
f=l azi 

(i=i.....r) (1.11) 
k=l 

Here AhJ is the algebraic complement of the element g kJ of the determinant A = 

= II BiJ II > 0. 

Since the terms dependent on uJ in expression (1.9) can be expressed as 

$5 $ WjUjf i Pij”iUj = i Bij (Ui - UiO) (Uj-ur)- i PijUiOUjO 

s i-1 i,j=l i,j=l i.j=l 

with allowance for (1. ll), it clearly follows that the expression for B [V; t, x; u] 
with respect to uJ attains its minimum value for uJ = uJoa 

Substituting values (1.11) in place of uJ in expression (1.9) and equating the result 
to zero, we obtain the equation B [V; t, x; ~“1 = 0 
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from which we obtain the function 

F (t, Z) = - W (t, X) + 5 piju:uj (1.12) 
i,j=l 

If the function w (t, 5) is negative definite, the function F (t, 5) is positive-defi- 

nite ; on the other hand. if the function w (t, 5) < 0; the function F (t, z) is gene- 
rally positive-constant. 

From Eq. (1.12) we see that the function F (t, z) depends not only on the given 
Liapunov function V (t, Z) and its derivative J$’ (t, z), but also on the coefficients of 

the form S (1.6) and on the elements of the matrix 1 rnaj 1 of additional forces (1.7). 

In other words, it cannot be determined uniquely from the functions v and w. Only in 
the particular case where the coefficients rnaj are such that 

do we have 
i+,=O (k=i.....r) 

i 
F (t, z) = - w (tc 4 

(1.13) 

(1.14) 

In this case formulas (1.11) imply that the controlling forces 

f$(t, 5)=0 (i=& **., r) 

We have thus established the structure of the function F (t, Z) occurring in (1.6), so 
that quality criterion (1.3) becomes 

&I(- W (t, LIZ [t]) + i Bijuioujo + i*lPi+4uj)dt 
(1.15) 

la i,i=l 

Positive-definite function (1.12) in quality criterion (1.3), (1.15) ensures a specific 

law of decay of the motions Z~ [tl ; the solution of the optimal stabilization problem 
is therefore sufficiently simple and obtainable in closed form. These facts in a certain 

sense justify lJ] the choice of class (1.6). (1.7). 
By virtue of system (1.5) with allowance for (1.7). (1. ll),(l. 15), the time derivative 

of V (t, 5) is given by r 

-$-El W (i?, X) - 2 2 P*jUFujO (1.16) 
i,f=l 

All of our statements concerning the sign of the function F (1, 5) are also valid for 
the sign of the function - dV/dt . 

Hence, if the function w (t, x) is negative-definite, then controlling forces (1.11) 
ensure the asymptotic stability of the unperturbed motion z = 0 by virtue of Eqs.(l.S) 
(as in the case where the function W (z) is negative-constant or identically equal to 

zero) ; moreover, the right sides of Eqs. (1. S) do not depend explicitly on time, provided 
the manifold M of points where r 

(1.17) 

does not contain entire motions of system (1.5) provided that z = 0 [4]. In both cases 

we have M 
00 

F (t, a? [t]) + i PijUiO [t] U: [t]) dt = min j. (F (tt X ItI) f 
i,j=t 
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(1.18) 

where the function F (t, Z) is defined by Eq. (1.12). 

We note that the results remain valid as in the case of a scalar control when 

y = u (+l,...r), 5 mjj = mi, ~Ppu=P>O 
j-1 

Here we have just one equation of the form (1. lo), which instead of (1.11) yields 

so that expression (1.12) becomes 

F (4 4 =-w(t, z) + 

Quality criterion (1.15) can be written as 

)'+pujdt 

and manifold (1.17) as 

(1.19) 

(1.20) 

(1.21) 

We have thus proved the following theorem. 

Theorem 1.1. If a positive-definite function fr with an infinitely small upper 

bound is known for stable system (l.l), then this function is the optimal Liapunov func- 

tion for system (1.5), (1.7) optimized by controlling forces (1.11) or (1.19) with respect 
to functional (1.15) or (1.20) in cases when the function wis negative-definite or when 

w < 0 . The right sides of system (1.5) do not explicitly depend on time, and mani- 

fold (1.17) or (1.21) does not contain entire motions of system (1.15) other than z = 0. 
Corollary. If there exists at least one nonzero matrix which satisfies condition 

(1.13). then system (1.1) whose asymptotic stability has been established by way of some 

Liapunov function V can be regarded as the optimal system, i.e. as the solution of the 

problem of analytical construction for system (1.5), (1.7) optimized with respect to the 
functional p] 

J=r[-w(re z)+ i Piju+j]dt 
0 i, j=l 

In the case where the manifold M defined by Eqs. (1.17) or (1.21) contains entire 
motions of system (1.5) in addition to x = 0, controlling forces (1.11) ensure simple 
stability of the motion z = 0 by virtue of Eqs. (1.5) ; moreover, 

F’(to, 2 (to)) = 5 (F (t. 2’ [t]) + i Pijuf [r] uj” [t]) dt + 
to i. i-l 

+ V (t, 2” [t])&, = min (r (F (1, 2 [tl) + $J Stiui It1 uj trl) dt + VU* 
h f. i=l 

= Itl)t,) 
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The validity of this expression can be verified by comparing the results of integration 

over t from 0 to 00 of Eq. (1.16) and of the inequality 
r 

.f& > - F (t, I* ItI) - 2 Puu~’ itI uj’ ItI 
i, j=l 

where u*, (t, z) are some functions which also solve the problem of stabilization of the 
motion t = 0 for Eqs. (1.5) for initial perturbations from domain (1.4) D]. 

Example 1.1. Let us consider the system of differential equations [S] 

2 = 5 Psr% 
r=l 

where the continuous bounded functions p&t) are such that 

for any t>/ to. 
Prr = - Prs (r # a), Pm < - h = cona < 0 

The asymptotic stability of the motion z = 0 can be verified by means of the Liapu- 
nov theorem by constructing the function 

v=+ i zrl, +v$ P,,%p 
a=1 S==l 

The function V is optimal for the controlled system 

where rn8 are continuous functions of time, p = conat > 0, and the controlling optimal 

force is UQ = -1/2fi-1 (mIxI + ... + mn +J 

We note that the latter system is also asymptotically stable for u = u” and m, = m (t), 

m3 =O(s=Z,...,n)when 

Pll - V2m3lfi < - h, p,, < - h (8 = 2, . . . . n) 

for any t > to . 
Example 1.2. Let us consider the stabilization in a central force field of the 

circular motion of a material point controlled by a reactive force. The solution in linear 

approximation is obtained in fl]. Retaining the notation of p], we can write the equa- 
tions of perturbed motion of the point in the form 

da dza l? 
-&F=tz, 

-=- 
dt (ro + + 

+ (vG+~3)2 $bu 

(TO + qa 

dm r0 + XI 
dt=yU’ 

b= cy 
cwro 

For u = 0 these equations have the first integrals 

y1~z22+ (lG+z3)a _ __2L+L=co,t 
(ro + x1)3 r0 + z1 

V*=t3=const 
ro 

from which the positive-definite Liapunov function 

?G 
v=v1--2-g- vs+ I.vla* w=o 
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can be obtained by the Chetaev method. 
Setting o (2, u) = F (2) + @us in (1.3). we obtain the optimal controlling force 

i 
w=-zp aa!$ ( Byb+2!p$ )=+bzs+ (If+-qc+...] 

where the ellipsis represents second- and higher-order small terms and also the function 

It is obvious that manifold (1.17) does not contain entire motions of the controlled 

motions under consideration for 1> afFo’ and c,,, # 0. 

2, Let us consider the following equations of motion of a holonomic mechanical sys- 

tern in Lagrangian coordinates : 
d 8.b aL 
dtaq,'--q= 

o (f=l,....n) W) 

whose equilibrium position is the point qi = 0, qi* = 0. The Lagrange function is 

not explicitly dependent on time and generally has the structure L (q, q> = b-i- 
+ L;I 4- Lo. 

In this case Eqs. (2.1) have the following (generalized) energy integral 

fJ i *$1 $9,. -L I L, -L, = const 
t 

(2.2) 

Let us suppose that the function H (q, q‘) is ~sitive-definite in the neighborh~ 
of the equilibrium position 

lqJ<h, lq**/<fi, h=const>O @=&...,a) (2.3) 

The equilibrium position q1 = qi’ SW 0 of the system is then stable, This position 

can be made asymptotically stable by subjecting the system to the additional forces 

QI = i Wj (Qs) uj (q** Cra’)* Uj (030) = 0 (2.4) 
j=l 

so that the equations of motion become 

d aL aL 
----K= dt &it 

(f-I*...,“) (2.5) 
j=l 

By virtue of system (2.5), the time derivative of the function H is given by 

_$.s = i Qtqi* = i i mijUj Qi’ 
i=l i=l j=l 

(2.6) 

If additional forces (2.4) are such that 

and if the manifold 
Q& + . . . + Qncr,' < 0 (2.7) 

Qxqx’ + . . . + Qd,, = 0 Gw 
does not contain entire motions of system (2.5). then the equilibrium position becomes 
asymptotically stable [4]. 

Let us determine which controlling forces ~1 = “io ensure the asymptotic stabilization 
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of the equilibrium position with minimization of the functional 

where F (q, q’) is a nonnegative function to be determined, and where the quadratic 
form is some given positive-definite function of the controlling forces. 

Let us write equations of the form (1.10) with the aid of the results of Sect. 1; they turn 
out to be 

(j=i, . . . . r) 

and yield 

% 
0 = _+ i * 5 mikqi* (i=i,....r) (2.10) 

k=l i=l 

i.e. the controlling forces are linear functions of the generalized velocities. 
Replacing the uJin the expression of the form (1.9) by the above values and equating 

the result to zero, we obtain an equation which enables us to find an expression for the 

function 
F (q, q*) = i PiPi% (2.11) 

which is a quadratic form of the generalized velocities. 

This form, which is positive-definite in Ui”l is generally positive-constant in the gene- 
ralized velocities Qi’. However, if the coefficients mikof additional forces (2.4) are such 
that the equations 

i Akj i mikqi’ = 0 G=f,...,r) 
k=l i=l 

have only the trivial solution Qi’ = 0 in domain (2. 3), then form (2.11) is a positive- 
definite function of QT. 

By virtue of Eqs. (2.5) the time derivative of the system energyH for uJ = Up is 

given by 
dH 

dr=- 
2 ~ PijUioUj = - 217 (a q’) 

i,j=l 

where Uj” are defined by Eqs. (2.10) ; moreover, we clearly have 
c 

/2: = 2 mijUjO = - -$- 

j=l 

so that the quadratic form F (q, q’) of the generalized velocities can be considered as 
a Rayleigh dissipative function ; the additional forces Qt’can be assumed to belong to 

the class of dissipative forces. The dissipation in this case is either complete or partial 
depending on whether function (2.11) is a positive-definite function or a positive-con- 
stant function of qi’. In the latter case manifold (2.8) is of the form 

~ PijUioUio = 0 (2.12) 
i,j=l 

We note that in the case of a scalar control where uJ = u, 

t r 

i w =mi, 2 Bij=P>O 

j=l i.1-1 
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instead of (J.l0),(2. ll) we have [6, ‘If 

Specifically, if the system is controlled with respect to the first coordinate only, then 

m, = m, m, = 0 (8 = 2, . . . . a), so that 

and functional (2.9) becomes 
co 

J= U k ~9is+~a)* 

Let us formulate our result. 

If the energy H (2.2) for system (‘2.1) is a positive-definite function of the general- 
ized coordinates and velocities, then it is the optimal Liapunov function for system(P.5) 

optimized by controlling forces (2.10) with respect to functional (~2.9). (2.11) under the 

condition that manifold (2.12) does not contain entire motions of system (2.5) other 

than qi = qi’ = 0. 

This result complements the results of [6, 71. The conditions of stabilization by dis- 
sipative forces were investigated in f5, 81. 

Example 2.1. Let us consider the optimal stabilization of the positions of rela- 

tive equilibrium of a triaxial gyrostat satellite [9] in an orbital coordinate system uni- 

formly rotating about the y-axis at the Keplerian angular velocity 00 . 
Let us consider some stable position of relative equilibrium for which the generalized 

coordinates qi (i = 1,2,3) defining the position of the satellite body in the orbital coor- 

dinate system have the values Q = Qto and in whose neighborhood the energy H is a 

positive-definite function of q,, qi . We take optimizable functional (2.9) in the form 

J= r (F ((I, 4’) + i PM) dt 
tr i-l 

where fil > 0 (i = i, 2, 3) and assume that the coefficients of the controlling forces 

in expressions (2.4) satisfy the conditions 

4i = mit mtj = 0 0 # il 

In accordance with formulas (2.10) and (2.11) we obtain a 

e-- i&i - m’.q[ 
3% 

If==It%3fr F(q, gi)=X mi”9;s 
i=l -a 

Such controlling forces constitute dissipative forces with complete dissipation ; they 
ensure optimal stabilization of the stable relative equilibrium of a satellite in whose 
neighborhood the function H is positive-definite, i.e. for any point of the domain of 

fulfillment of the sufficient conditions of stability. At the same time such forces disrupt 

the stability achieved through the action of gyroscopic forces [5, 61. 
Certain cases allow optimal stabilization of the equilibrium positions of a satellite 

and forces with partial dissipation. To be specific, let us consider the position of relative 
equilibrium in which the principal inertial axes tit nrta of the satellite coincide, respect- 
ively, with the axes z, -2, --y of the orbital coordinate system where the constant gyro- 
static moment k of the gyro wheels is directed along the axis ~3. The position of the 
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satellite in the orbital system is defmed by the Euler angles 0,$, cp which have the 
values & = ‘Inn; *o = 0, ‘PO = s/G for the equi~brium position in question. The suffi- 
cient conditions of relative equilibrium of the satellite with respect to the Euler angles 

and their time derivatives are readily obtainable with the aid of the Lagrange theorem 
and turn out to be 

c -kloo>B>A, C - Vrkloo > A 

where A, 3, C are the principal central moments of inertia of the gyrostat. 

Let us consider the case of controlling forces with partial dissipation, where either 

ml = 0 or rns = 0 and, respectively, & = 0 or Bp = 0, but ml # 0, B* # 0. 
From the equations in variations for perturbed motion, namely 

(where the & denote the variations of the angles 0, pp, g, ) we see that optimal stabili- 
zation of stable relative equilibrium is ensured for both ml = 0 (mz # 0, m3 # 0) and 

m2 = 0 (ml # 0, m3 # 0) if 
A-f-B- C + k/oo#O 

3. Let us consider the problem of optimal stabilization of the motion of a system 
with respect to some ( ar,, . . . . zr,) rather than all ( zr, . . . , IC, ) of the variables charac- 
terizing the system. This problem, like that of stability of motion with respect to some 

of the variables [3]. is of interest in many practical cases. 
For brevity we write the equations of perturbed motion of the controlled system in 

vector form ) f&c / A! = X(l, 2, u) (3.1) 

where t = (yt, . . . . oh, zt, . . . . z,,,) is the real n-vector of state of the system, where 

n = k + m, k > 0, m 2 0, u = (t&r, . ..( u,) is the real control r-vector r > 0. 
We assume that the real ra-vector function X (t, I, U) is defined and continuous in the 

domain 
t > to, Ivi 1 < H, q are arbinary (3.2) 

for all possible values of the control vector u sought in the form of the r-vector func- 

tion u (t, ~1, Z) which must be defined and continuous in domain (3.2). We assume 
that the vector functions X and u satisfy the conditions ensuring the existence and 

uniqueness of the solutions of Eq. (3.1) for all initial conditions from domain (3.2) ; 
moreover, each solution of this equation is z-continuable (in other words, every Z-com- 

ponent of the solution of Eq. (3.1) continues to be defined as long as I&[ SY$ Hi). We 

also assume fulfillment of the identities 

x (t, 0, 0) = 0, U (t, 0, 0) = 0 

i. e. that Eq. (3.1) has the solution z = 0. The control quality criterion can be expressed 

as the minimum condition for the integral 

(3.3) 



On the optimal stabilization of controlled systems 425 

where o (t, 5, U) is some nonnegative scalar function defined in domain (3.2). 
Problems on stabilization and optimal stabilization with respect to part of the varia- 

bles which generalize the corresponding problems II] for all the variables can be formu- 
lated for system (3.1). 

Let us state the problem of optimal stabilization with respect to some of the variables. 
We are to find the vector of controlling forces U’ (t, X) which ensures the asymptotic 

stability of the unperturbed motion X = 0 with respect to the &component of the vec- 
tor X (y-asymptotic stability) by virtue of Eq. (3.1) (for u = no (t, 5)). Whatever the 

other vector of controlling forces U* (t, x) ensuring the y- asymptotic stability of the 
motion X = 0, we necessarily have the inequality 

~o(t,Xo[f];u’[~l)dl~~“(t,x*[tl..*(tl)dt (3.4) 
0 10 

for all initial conditions to, X (t,,) from the domain 

t>o, 1X8 UrJ)IG~ (3.5) 

where the positive constant h is either prescribed in the conditions of the problem or 

has the same meaning as in the proof of the theorem on stability with respect to some 
of the variables [3]. 

The meaning of the problem of y-optimal stabilization makes it expedient to define 

the function o in (3.3) and the control vector independently of the ~-component of the 

vector x ; however, since the former may, in fact, depend on the z-,component, we 

have stated the problem in its general form. 
Let us recall some definitions. The fixed-sign function Jr (t, x) is called “y-positive- 

definite” if there exists a time-independent positive-definite functionW (y)such that 

the difference V - W > 0 in domain (1.2). 

The function v (t, X) bounded in domain (1.2) admits an infinitely small upper 
bound in y if for any arbitrarily small positive number i there exists a number h > 0 

such that Iv1 < 1 for arbitrary t > t,,, Ivi 1 & h, Zj . If the former inequality is 
fulfilled for t > to, /x*’ 1 < A , we say that the function v can have an infinitely small 

upper bound (in all its variables). 

As in the case of stability with respect to all the variables, there exist several formu- 

lations of the theorem on asymptotic stability with respect to some of the variables. 
This in turn means that there are several possible variants of the theorem on optimal 

stabilization with respect to some of the variables. We confine our attention to two of 
these variants ( l ) 13, lo]. 

The ore m 3.1 (on y-optimal stabilization). If the differential equations of per- 
turbed motion (3.1) are associated with a y- positive-definite function V” (t, X) which 
admits an infinitely small upper bound in 9 (in all the variables x) and with a vector 
function u” (t, X) satisfying the following conditions in domain (3.2) : 

l ) We take this opportunity to refine the formulation of Theorem 2 of [31: according 
to the proof given in [3] the function V (t, q,. . . , z,,) must admit of an infinitely small 
upper bound in zi,..., %a This proof is also valid if V (1, ti,..., ;zn) admits an infinitely 
small upper bound in z,,..., tk provided v’ is a fixed-sign function in the variables 

=l,**., tk (m d kg n). 
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I) the function 
UJ (6 4 = 0 (t; s; 24” (t, 5)) 

is ~itive-de~i?e in y (in all the variables); 

2) the equation 

is valid ; 
B W'; t; z; u" (t, ~$1 = 0 (3.6) 

3) the inequality 
B IV'; t; z; ul 9 0 (3*7) 

holds whatever the numbers rkj , then the vector function U” (t, tj solves the problem 
of y-~optimal stabilization. Moreover, 

~~(t;fItl;lr”Itl)dr=min~w(l;lltl;ulll)dt= V*(tolz(&J) (3.8) 
(I * 

Proof. All of the conditions of the theorem [3] on stability in y, i. e, 1 yt 1 < A for 

r >, 4 if 1 xea 1 < h , are fulfilled for u = EL’ (t, _z) , Here 0 < A ( N is an arbitrary 
number and h > 0 is a number defining the domain free of all points of the surface 

Y” (to, 5) = 1, where I is the exact lower bound of the function W (y) under the condi- 
tion 11 y I1 = A. 

It is easy to see that 
fim V” (l, 5 It]) = 0, t -_, 30 

for all initial values tSO lying in the domain 1 zso 1 < h. 
Since V (6, t it]) is a monotonic non~creasing function, it tends to some limit e, 

IP 2 e , as t -+ 00. Let us suppose that e > 0. It would then follow by the property of the 

function V”, which can have an infinitely small upper bound in y (in z), that there exists 

a number e defining the domain 1 y 1 Js; e (1 z 1 6 E) for whose points the values of V are 
smaller than e. The values of the variables & (st) would then lie somewhere in the 

domain 
e<(?/lfA (e<,<zll 

Let us denote the lower bound of the function - dV’Jdt in this domain by 1’ > 0 . 
Then for any t > &J the values of the function V” in this domain satisfy the condition 

dv”/& q -I’. The equation t 

V” - Vo” = 
s 

cdt 

to 

then implies that 
V” < Vo” - 2’ (t - to) 

which is impossible, since the left side of the inequality is a positive-definite function 

in 6,. and since the right side becomes negative for sufficiently large t . Hence, e = 0, 

i.e. lim Ij ==0 as t+-. We have therefore proved that the con~olling forces u” (t, t) 
ensure the asymptotic stability in y of the motion z = 0. Now let us verify the validity 
of relation (3.8) by the method of TJ-1. Integrating the equation 

dV’/dt = -co (1, I, ~‘1 

(which follows from condition (3.6)) along the motion z” ltl from fo to m and recalling 
that lim v” (t, to It]) = 0 as t 4 00 

we obtain 
P (to, 2 (to)) = y 0 (f; so [t]: zi” itif dt (3.9) 

ii7 
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On the other hand, let II* (t,~) be some control which alsoensures the stabilization in 

y of the motion t = o for initial perturbations from the domain ]I,,,] < A. Then by ver- 
tue of (3.7) we have the inequality 

dV”ldt > --o (t, z+ [t]; u* [t]) dt 

Integrating this inequality over time from to to DO and again recalling the limit rela- 
tion for VO, we obtain 

k’” (to, z (to)) < [o (t; Z* [t]; u* [t]) dt 

io 

Comparlng this inequality with Eq. (3.9), we conclude that condition (3.8) is valid. 

The theorem has been proved. 

Note 3.1. (1) The theorem remains valid for controlling forces u = u (1) and also 

in the case where the controlling forces are restricted by some additional inequalities 

I u 1 <a. In the latter case we merely require that condition (3.7) be fulfllled for all 

values of I( under the prescribed restrictions p] ; (2) the theorem is valid for the prob- 

lem of y-optimal stabilization in the whole if we require fulfillment of conditions(3.6) 

and (3.7) for all pf (- 00 < yi < W) and if V” (t, z) + 00 for y -P 00. 

4, Let us reconsider the equations of motion of a holonomic mechanical system. Let 

us suppose that the coordinates Qa (CC = k $- l,..., n) are cyclical. i. e. that 

i?L/f3q,=O (a=k+i,...,n) 

Equations (2.1) then have the first integrals 

pa = aL/aq; = Ca (a=k+i,...,n) (4.1) 

Let Eqs. (2.1) have the particular solution 

qj = 0, q; = 0 (i=i, . . . ,k), q,‘= ~,=const (4.2) 

describing steady motion for certain fixed values of the constants c, = c,’ . The latter 
can be stable with respect to the variables qr, qj’, qa’ only ; it is unstable with respect 

to the variables qa. Ignoring the cyclical coordinates by the Routh method, we introduce 
the Routh function 

‘(qj? Qj9 cJ=L- i qica 

a=lC+1 

and write the equations of motion in the form 
d aR 8R 

-7- 
dt aqj 

- =o (i=l,...,k) 
‘qj 

which constitute the Lagrange equations for the reduced system. 
Equations (4.3) constitute the equations of perturbed motion for steady motion (4.2) ; 

once they have been integrated the cyclical coordinates qb can be found by quadratures. 
Let us suppose that the function R is not explicitly dependent on time; Eqs. (4.3) then 
have the energy integral ii 

J~=j~~q~-R=R,-R,=consl (4.4) 

If the function H is a positive-definite function of the variables qj, Qj.9 then motion 
(4.2) is stable with respect to these variables and also with respect to pa , and therefore 
with respect to qo’. Now let us subject t1.e sysrem to the controlling forces 

Qj = mjlu, + . . . -I- mp, (4.5) 
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as a result of which the equations of perturbed motion become 

d c?L _--+Qj, $.=c, 
dt aq;’ (4.6) 

or,which is the same thing, ’ * 
daR aR ---- 
dt &,T~’ i3qj (i=l,...,k) (4.7) 

S=l 

similar in form to Eqs. (2.5). Introducing an integral of the form (2.9) and repeating 

the argument of Sect. 2, we conclude that the result of Sect. 2 is valid for reduced system 

(4. ‘7), (2.9). But optimal stabilization of the reduced system in the variables qr, Qf is 

equivalent to optimal stabilization of initial system (4.6). (2.9) in some of the variables. 
This implies the validity of the follwing theorem. 

Theorem 4.1. If the function H (4.4) is a positive-definite function of the posi- 
tional coordinates and velocities, then it constitutes the optimal Liapunov function for 

system (4.6) optimized in the variables qj, Qj’ with respect to functional (2.9), (2.11) 

by controlling forces (2.10) provided manifold (2.12) does not contain entire motions 
of system (4.7). 

Note 4.1. Since H = Rz (qi, q,‘) f W (qjl ca), where Rz (qj, qi) is a fixed-sign 
function in qj’, then H is of fixed sign provided the function W (qj, ca) =- --R. is positive- 
definite in qj, i.e. if it has a minimum for qj = 0. 

Example 4.1. Let us consider in restricted formulation the problem of optimal 
stabilization of the equilibrium position in the orbital coordinate system of the axis of 

symmetry of a symmetric gyrostat satellite rotating at some angular velocity about its 
axis of symmetry [9]. We define the position of the gyrostat body in the orbital system 

by the Euler angles tt, g, cp; we also assume that the gyrostatic moment is colinear 

with the axis of symmetry of the satellite. The proper rotation angle ‘P is a cyclical 
coordinate.; ignoring the latter, we obtain the Routh function 

R (0, 11, O’, *, c) =%A [IF -I- I<2 s in* 0 + 200 (q sin 0 co9 0 co9 Q + 0’ sin g)] + 
+ CO’ ~0s 0 - n/z WO? (C - A) cos? 0 - I/Z hh2 sin2 0 cos2 (I - 

-ccoosinOcos$-~/2(c-k)2/C (4.8) 

where c is the constant associated with the cyclical integral, 

C (cp’ + $’ cos 0 - 010 sin 0 cos I#) + k = c 

The equations of motions have the solutions 

0 = o0, $ = $0, 0’ = 9)’ = 0 (4.9) 

which break down into the following three families: 

0” = ‘lzn, 90 = n (4.10) 

OR = ‘/zn, cos $0 = -c/n 00 (4.11) 

sin O0 = c/(/l,4 - 3C) 00-1, 9” = .rl (4.12) 

Solutions (4.9) describe the steady motions of a gyrostat satellite in which the axis 
of symmetry is either colinear with the orbital plane ((4.10)) or orthogonal to the radius 
vector of the center of mass ((4.11)) or orthogonal to the tangent to the orbit ((4.12)). 

Let us consider some stable steady motion for which (4.9) have specific values and in 
whose neighborhood energy (4.4) is a positive-definite function of the variations 8, $, 
8’, $,‘. We take optimizable functional (2.9) in the form 
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co 

J= s (F cx 4% 8’, tp’) + pluls + pau-2) fzt 

where $, > 0 (i = 1, 2),“assuming that the coefficients of the controlling forces in ex- 

pressions (4.5) satisfy the conditions 

mit 3 mt, mij = 0 liZi) 

In accordance with formulas (2.10) and (2.11) we obtain 
1 lL$=--!%#., Fz4 

852 
2&.%) (4.i3) 

Controlling forces of this form for the reduced system constitute dissipative forces with 

complete d~s~pa~on ; they ensure optimal stabi~~ation with respect to the variables 9, 

9, 6, 9’ of the stable steady motion in whose neighborhood the function H is positive- 

definite, 
Now let us consider forces with partial dissipation, when either ml # 0, mz = &a = 0 

or ma #O, ml = fll = 0 in (4.13). The equations of motion in the neighborhood of 
steady motion (4.9) can be expressed in variations in the form 

51" - 6252' + aI&= -- Cl', 
2"p: 

~b'+!afl'+a&= -g t (4.14) 

where & are the variations of the angles 6 and $; Q and ai are constant coefficients 

given by the following expressions: 

for solution (4. lo), 

63=2-u, ar=a+It-I, flsr=U-i (4.15) 

for solution (4.11) 
a = a, 01 = b. as = 1 - 0% (4.16) 

where 
a = cfAwo, b = 3 (C/A - i) (4.17) 

The equations in variations for solution (4.12) are of the form 

t$** - 
(1 fb) r . 
(1 -b)20 Ea + 

(1 -W-~a51= 
1 --b 

mr Fs 
2i31 

4;’ + (1 + b) 41’ - bF;z = - g 52' 

(4.18) 

The equations in variations imply that optimal stabilization in the variables 9,+#, 6, 
+* of steady motion (4.9) stable for al> 0, aa > 0 is ensured by controlling forces of 

the form (4.13) for both ml # 6, rnp = 0 and ml = 0, ma # 0 under the condition 

0 # 0 (for solutions (4.10) and (4.11)) or b # ---I (for solution (4.12)). The shaded 

Fig. 1 
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areas in Fig. 1 represent the domains of optimal stabilization by forces with partial dis- 

sipation corresponding to Eqs. (4. 10)L(4. 12) and coincident with the domains of fulfill- 
ment of the sufficient conditions of stability with the exception of the straight line a =2 

for solution (4. lo), the straight line a = 0 for solution (4.11). and the straight line 
6 = -i for solution (4.12) on which the conditions of optimal stabilization are not 

fulfilled in the first approximation. However, consideration of the nonlinear terms in 

the equations of perturbed motion indicate that the conditions of optimal stabilization 
are also fulfilled on these straight lines. 
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The Bellman partial differential equation involved in the synthesis of a stochastically 
optimal control of the final state of a linear system is considered. Approximate formulas 
and estimates of the solution are derived on the basis of the solution of the Bellman equa- 
tion for the determinate variant of the problem. A numerical method of solution is pro- 
posed. The problem in the one-dimensional case is reduced to an integral equation of 
the first kind ; a finite formula for the solution is derived under certain additional assump- 
tions. 


